250 research outputs found

    Features of Electronic Emission from Surface of Dielectric Thin-film Materials with Ion-beam Etching

    Get PDF
    This work presents a series of experimental studies aimed at validating the main theoretical aspects of the ion-electron emission in conditions of ion-beam etching and lookup the possibility of practical realiza-tion of the method of operative control processes ion-beam etching different dielectric thin film materials of electronic technics. In the real article the estimation of influence of the pointed superficial potential is conducted in dielec-tric tape on the integral signal of secondary electrons at an ionic etch. The electric field strength in dielectric film under the influence of the induced potential creates prereq-uisites for the emergence of "Malterovskay" emission, defined by properties actually dielectric and proper-ties of the substrate. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3627

    Features of Ion-Electronic Emission from Surface of Semiconductors

    Get PDF
    The results of the research value of the current of the secondary electrons in the ion-beam etching of various semiconductors. Shows the setup and electrical circuit of the experiment. An experimental study to determine the dependence of the current of the secondary electrons from the band gap Eg and the height of the potential barrier (electron affinity) eχ. It is shown that in the conditions of ion-beam etching of the semiconductor is the penetration of the electric field, which leads to a shift of the energy levels of electrons in the surface layer. Found that the ion-electronic signal emission silicon n-type is higher than the p-type silicon. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3366

    Impedance spectroscopy of synthetic proustite at high pressures

    Full text link
    The effect of high pressure (up to 40 GPa) and alternating electric field frequency (100 Hz-500 kHz) on the electrical properties of synthesized single-crystal proustite Ag3AsS3 is studied. The behavior of real and imaginary parts of impedance upon an increase in pressure confirms earlier data on the closing of valence and conduction zones, and on the material's transition to the metal state at ∼30 GPa. © 2013 Allerton Press, Inc

    Concept for a Case Study of a Large Electrical Engineering Enterprise

    Get PDF
    This concept for research on problems of innovation management of electrotechnical firms emerged from two ideas, the cores of which cut close to those set forth in the research proposal. One of these was to spread the interest over several sectors that differ in the character of their development. Electrotechnology, a notion yet to be widely accepted, and used here to denote an industrial branch producing products for electro-engineering (power engineering, consumer goods produced with basically the same technology, etc.), is considered a mature industry with a steady and relatively stable growth. Determining what role innovation has played in this development and what problems it gives rise to promises to be a challenging task. The second idea was that in several countries similar but uncoordinated studies are underway and that in fact similar structures can be observed. The object of the study-in this case an electrotechnical company-is being studied by an external research institute, through close collaboration of course. Data on gross production and value added in this branch show similar trends in many countries, although there are differences in external factors, such as processes of capital formation. The many similarities in the organization and structure of production processes could be useful in preparing a more reliable view of future development of this industrial branch. Electrotechnology will not be able to escape the effects of computer-aided design, robots and flexible manufacturing systems, power semi-conductors, new materials, better testing methods, and of course changing price structures. This concept will also serve as a blueprint at the first task force meeting in Leningrad where through discussion it will be possible to order the individual issues according to participants' priorities

    Colossal variations in the thermopower and n-p conductivity switching in topological tellurides under pressure

    Full text link
    Under applied high pressure, the electronic, optical, structural, and other properties of narrow-bandgap telluride semiconductors are subjected to dramatic changes. They can include, for instance, structural and electronic topological transitions. In this work, we investigated the electronic properties of single crystals of three families of tellurides, namely, HgTe, PbTe, and Bi2Te3 by measurements of the thermoelectric power (the Seebeck coefficient) and electrical resistance under high pressure up to 10 GPa. The applied pressure led to spectacular variations in the electronic transport of all three tellurides. We addressed these effects to electronic topological transitions that could be driven by significant narrowing of the bandgaps in the normal-pressure phases of these compounds. In particular, at about 1 GPa, we observed an n-p switching in the conductivity of HgTe, which was well reproducible under multiple pressure cycling. In contrast, in PbTe, we found that an electronic topological transition irreversibly turns the conductivity from p- to n-type. An electronic topological Lifshitz transition in p-type Bi2Te3 crystals with a low carrier concentration enhanced the n-type conductivity in a narrow pressure region about 2-3 GPa and resulted in a double p-n-p conductivity inversion. An irreversible p-n conductivity switching in p-type Bi2Te3 happened already on decompression from a high-pressure phase from about 8 GPa. The stress-controlled p-n inversions of the electrical conductivity in these industrially important telluride materials can potentially find emergent applications in micro- and nanoelectronics. © 2020 Author(s).The research was supported by a grant of Ministry of Science and Higher Education of the Russian Federation No. 075-15-2020-797 (13.1902.21.0024)

    ОСОБЕННОСТИ ИОННО–ЭЛЕКТРОННОЙ ЭМИССИИ С ПОВЕРХНОСТИ ПОЛУПРОВОДНИКОВЫХ МАТЕРИАЛОВ В ПРОЦЕССЕ РЕАКТИВНОГО ИОННО–ЛУЧЕВОГО ТРАВЛЕНИЯ

    Get PDF
    The existing methods of diagnosis of solid surfaces in ion− plasma processes have been analyzed. We found that the most efficient method of estimating surface condition, determining the transition of the etching process from one layer to another and determining the end of the etching process is the registration of ion−electronic emission during ion−beam etching. Results on secondary electron current for ion beam etching of various semiconductors have been reported. We show the experimental setup and describe the electric circuit for the detection of secondary electrons. An experimental study has been carried out to determine the dependence of secondary electron current on the band gap Eg and the height of the potential barrier (electron affinity) χ of Ge, Si, GaAs, GaP and SiC semiconductor materials. We found no clearly expressed dependence of integral signal of ion−electronic emission on Eg and χ. We show that under the conditions of ion beam etching under the influence of the surface potential the electric field penetrates in the semiconductor volume, leading to a shift in the energy levels of electrons in the surface layer and a change in the secondary electron current due to the appearance of autoelectronic emission. We found that the signal of ion−electronic emission in n−type silicon is higher than in p−type silicon. A model of ion−electronic emission from the surface of semiconductors is presented for the conditions of ion−beam etching, consisting of: emission with the participation of conductivity band electrons, emission due to the direct transition of electrons in the ion – atom system, and autoelectronic emission under the influence of surface potential. Рассмотрены существующие методы диагностики поверхности твердых тел при ионно−плазменных процессах. Установлено, что наиболее эффективным методом оценки состояния поверхности, определения перехода процесса травления от одного слоя к другому и окончания процесса травления является регистрация ионно−электронной эмиссии в процессе ионно−лучевого травления. Представлены результаты исследований значения тока вторичных электронов при ионно−лучевом травлении различных полупроводников. Приведена электрическая схема эксперимента, описан узел регистрации вторичных электронов. Экспериментально определены зависимости тока вторичных электронов от ширины запрещенной зоны Eg и высоты потенциального барьера (сродства к электрону) χ полупроводниковых материалов Ge, Si, GaAs, GaP, SiC. Четко выраженной зависимости интегрального сигнала ионно−электронной эмиссии от Eg и χ не установлено. Показано, что в условиях ионно−лучевого травления под влиянием поверхностного потенциала происходит проникновение электрического поля в объем полупроводника, что приводит к смещению уровней энергии электронов в приповерхностном слое и изменению значения тока вторичных электронов за счет возникновения автоэлектронной эмиссии. Установлено, что сигнал ионно−электронной эмиссии для кремния n−типа проводимости выше, чем для кремния p−типа. Представлена модель ионно−электронной эмиссии с поверхности полупроводников в условиях ионно−лучевого травления, состоящая из: эмиссии с участием электронов зоны проводимости, эмиссии за счет прямого перехода электронов системы ион — атом, автоэлектронной эмиссии под влиянием поверхностного потенциала.
    corecore